Embeddedadvisor
US
APAC
EUROPE
  • Home
  • Insights
  • Whitepaper
  • Conferences
  • Newsletter
  • Subscribe
  • News
  • About us
Go to...
  • Home
  • Insights
  • Whitepaper
  • Conferences
  • Newsletter
  • Subscribe
  • News
  • About us
  • Categories

  • IP Design
  • Telecom
  • Wearables and Sensor
  • Consumer Electronics
  • IoT
  • Industrial Computing
Go to...
  • Categories

  • IP Design
  • Telecom
  • Wearables/Sensor
  • Consumer Electronics
  • IoT
  • Industrial Computing
×
#

Embedded Advisor Weekly Brief

Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Embedded Advisor

Subscribe

loading

THANK YOU FOR SUBSCRIBING

  • Home
  • Insights
  • Embedded Design and Solutions
Editor's Pick(1 - 4 of 8)
left
Breaking the Geo-Spatial Barriers - How Telepresence Devices are Changing the Rules of Business

Harsha Kikkeri, Director of Advanced Dev, Suitable Tech.

Flight Simulators Allow Crew Training to Aim for Perfection

Dan Littmann, Flight Dynamics Manager, FlightSafety International

Are We Ready For the Next Revolution in Cars?

Axel Schiller, Marketing Director, Automotive Division, Micron Technology

Wi-Fi Trends: What to Expect in the Next Five Years

Robert Brown, VP-Sales and Business Development, ViaSat, Inc.

Evolution toward 5G Multi-Tier Networks

Hank Kafka, VP-Access Architecture and Devices, AT&T

Addressing Engineering Challenges of Increasingly Complex Automobiles

Sandeep Sovani, Global Director of Automotive Industry, ANSYS

Role of Technology in Robotics

Saksit Suetrong, CEO & Robotics Engineer, iA-ROBOTICS

Designing at the Speed of Thought

Andy Rhodes, Global Executive Director, Dell

right

Robotic Technology is on the Cusp of a Revolution

By Michael Garrod, CTO & CEO, NPC & BlackDog Robotics

Tweet

Michael Garrod, CTO & CEO, NPC & BlackDog Robotics

It has been 65 years since Issac Asimov published I, Robot and Alan Turing introduced the Turing test in his paper “Computing Machinery and Intelligence.” In that time the relentless march of technology has given us microwave ovens, communications satellite, the internet and mobile communications. However, the promise of practical robotics for the home and workplace has not been realized.

Robots are used extensively in manufacturing to automate repetitive tasks. While this first generation of robots is capable of repeating a set of programmed actions twenty four hours a day seven days a week with virtually no failures, they are incapable of dealing with the type of unforeseen situations all too often seen in the world outside their ruthlessly controlled environments.

Robotics companies like Boston Dynamics (a wholly owned subsidiary of Google Inc.) have produced some extraordinary robots such as LS3 and Atlas. Funded by DARPA, LS3 is the size of a horse and can carry payloads of up to 180 Kg over rough terrain on its four legs. Atlas is a two legged humanoid robot capable of negotiating rough outdoor terrain. While LS3 is currently being tested by the US Marine Corps, neither LS3 nor Atlas will likely step outside the bounds of the research lab, any time sooner.

"The technology which has allowed the smartphone to make the leap from yuppie status symbol to omnipresent personal connected computer is also the foundation for the rise of intelligent, practical robotics"

Law enforcement and the US military use a variety of robots to complete tasks in areas too dangerous for a human. These small to medium sized tracked vehicles can provide remote surveillance and are used for explosive ordnance disposal (EOD). While these robots are in the main tele-operated in more or less the same way as the $100 remote controlled cars sold in every hobby shop, they are all too often stopped in their tracks by some unforeseen situation; a pair of pantyhose or an ironing board have proved to be the downfall of a $150,000 law enforcement robot requiring one or more persons to be put into harm’s way. The most extreme example of this is the requirement for a person wearing bomb suit to approach and examine a live explosive device at close range for no other reason than the available EOD robots are unable to deal with the placement or construction of an improvised explosive device (IED).

In the words Obi Wan Kenobi, “These are not the droids you are looking for.”

To be truly practical robotics must make the same leap made by cell phones and associated mobile technology.

In 1983 Motorola released the DynaTAC 8000x, costing $3995 and weighing 1.75 lbs the 8000x was the world’s first commercially available portable phone. Capable of up to 30 minutes of use before being recharged for 10 hours the DynaTAC was little more than a status symbol. The thirty three years between the release of the DynaTAC and the release of the iPhone 6s have seen technology evolve beyond all recognition. The iPhone 6s has 58 times more processing power, (115 vs 2 GFlops) and 64 times as much RAM, (2GB vs 128MB) than the 1989 CRAY- 2 supercomputer. The iPhone is capable of capturing and transmitting high-resolution photos and 4K video over both mobile and WiFi networks. It is capable of determining its location on earth to a few meters and with its Android brothers has become ubiquitous in modern society an ever-present reminder of our need to remain connected. By January 2014 90 percent of American adults had a cell phone and as of October 2014 64 percent of American Adults used a smartphone.

The technology which has allowed the smartphone to make the leap from yuppie status symbol to omnipresent personal connected computer is also the foundation for the rise of intelligent, practical robotics. The same cheap powerful processors which drive smartphone are capable of allowing robots to begin to acquire intelligence. The same sensors which allows smartphones to sense movement can be used to allow robots to begin to sense their environment. The same cameras which allow smartphones to capture videos of cats in incredible Ultra HD can allow robots to visualize their world and the same communication technology used by smartphones to distribute those cat videos world-wide can be used to allow robots to better interact with us and each other.

In the next year or so Google’s Project Tango will bring 3D sensing and mapping to smartphones. This technology will allow cheap robots to understand their environments in a way that is currently only possible for the most complex and expensive research robots.

Currently companies like Fetch Robotics and BlackDog Robotics are developing the next generation of robots which are beginning to acquire the capabilities that will allow them to make the leap into logistics, hospitality retail, law enforcement and eventually the home. These capabilities arising directly from smartphone technology provide robots with the potential to better understand their environment, process information quickly enough to act autonomously or semi-autonomously and to communicate large amounts of information more widely and more quickly.

Robotic technology is on the cusp of a revolu­tion, tech­nology is coalescing to allow ro­bots to acquire capabilities. This allow them to make the leap from the research lab to every home and business; robots that understand their en­vironment, that are capable of learning how to deal with the unexpected and are able to complete complex tasks unsuper­vised or at least lightly supervised. Ro­bots with practical artificial intelligence are becoming possible although this does not mean that any of these robots would trouble a Turing test. The ability to func­tion in even a mildly chaotic environment requires a degree of intelligence and at least for now that should not mean the end of mankind.

See Also: IDERA | CIOReview

tag

Robotics

Read Also

Evolution toward 5G Multi-Tier Networks

Evolution toward 5G Multi-Tier Networks

Hank Kafka, VP-Access Architecture and Devices, AT&T
Addressing Engineering Challenges of Increasingly Complex Automobiles

Addressing Engineering Challenges of Increasingly Complex Automobiles

Sandeep Sovani, Global Director of Automotive Industry, ANSYS
Role of Technology in Robotics

Role of Technology in Robotics

Saksit Suetrong, CEO & Robotics Engineer, iA-ROBOTICS
Designing at the Speed of Thought

Designing at the Speed of Thought

Andy Rhodes, Global Executive Director, Dell

Weekly Brief

loading
Top 20 Embedded Design & Solution Companies - 2018

Embedded Design and Solutions Special

Featured Vendors

  • Avnet: Embedded Capabilities Beyond Limits
    Avnet: Embedded Capabilities Beyond Limits
  • Octo Telematics: Empowering Auto Insurance with Intelligent Telematics
    Octo Telematics: Empowering Auto Insurance with Intelligent Telematics
  • MRS Electronic: Providing End-End Connectivity
    MRS Electronic: Providing End-End Connectivity
  • MapAnything: Wide Horizons of Geo-Productivity with Telematics 2.0
    MapAnything: Wide Horizons of Geo-Productivity with Telematics 2.0

I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info

Copyright © 2021 Embedded Advisor. All rights reserved. Registration on or use of this site constitutes acceptance of our Terms of Use and Privacy Policy.
follow on linkedin follow on twitter
This content is copyright protected

However, if you would like to share the information in this article, you may use the link below:

embedded-design-and-solutions.embeddedadvisor.com/cxoinsights/robotic-technology-is-on-the-cusp-of-a-revolution-nid-101.html?utm_source=google&utm_campaign=embeddedadvisor_topslider